Deljenje decimalnih brojeva

Deljenje decimalnih brojeva prirodnim brojem

Ako želite, možete još jednom odgledati video lekciju kako delimo decimalne brojeve prirodnim, a mi ćemo to sada ponoviti i naučiti kako delimo bilo koja dva decimalna broja.

Prvo, da se podsetimo, uradićemo naredni primer.

Primer 1

Mirjana je pakovanje od 10 sijalica platila 172,5 dinara. Kolika je cena a) 100 sijalica, b) jedne sijalice?

a) Ako 10 sijalica košta 172,5 dinara, 100 sijalica će koštati deset puta više, dakle:
    172,5 10 = 1725 dinara              pomeramo zarez za jedno mesto udesno

b) Jedna sijalica će koštati deset puta manje, zato:
    172,5 : 10 = 17,25 dinara             pomeramo zarez za jedno mesto ulevo

Kako delimo decimalne brojeve prirodnim?
Tako što delimo prvo cele, zatim kada naiđemo na decimalni zarez, prepisujemo ga u količnik i nastavljamo da delimo kao i do sada dok ne dobijemo ostatak nulu ili dok ne uočimo pravilnost u ponavljanju brojeva prilikom periodičnog decimalnog zapisa.

Sve smo mi ovo već pominjali prilikom pretvaranja razlomaka u decimalne brojeve i sad ćemo da se podsetimo. Naredni primer je sa korišćenjem zamišljenih nula iza zareza.

Primer 2

Primer 3 Ovaj i naredne probajte prvo sami ili imitirajte deljenje prilikom prepisivanja, da lakše shvatite.
a)

b)

Primer 4 Malo zanimljiviji primer sa nulama na početku i deljenje dvocifrenim.
a) 

b)

Primer 5 Još jedan primer da se podsetimo beskonačnog periodičnog zapisa i zaokrugljivanja, ovde na 3 decimale.

Deljenje decimalnih brojeva


Kako ćemo deliti bilo koja dva broja u decimalnom zapisu?
Znamo da se prilikom množenja i deljenika i delioca nekim istim brojem vrednost količnika neće promeniti i to ćemo koristiti kao trik u ovom slučaju.

Ako želim da podelim na primer 78,9 i 1,25, mogu da ih oba pretvorim u prirodne brojeve tako što ću ih množiti istom dekadnom jedinicom i na taj način neću pokvariti količnik.

Ako moraju oba da mi budu prirodna, znam da je 78,9 ∙ 10 = 789, ali mi je 1,25 ∙ 10 = 12,5 što nije dovoljno dobro, pa moram oba množiti sa 100  →  78,9 ∙ 100 = 7890, a 1,25 ∙ 100 = 125 i sad su mi oba prirodna i mogu lepo da ih podelim. Znači:

78,9 : 1,25 = 7890 : 125 i kada podelim prirodne, znam da je količnik isti kao da sam delila i početne, decimalne brojeve. Rezultat je sledeći:


Kako znamo da množenjem dekadnim jedinicama ustvari samo pomeramo zarez, pravilo može da glasi i ovako:
Prilikom deljenja brojeva u decimalnom zapisu i od deljenika i od delioca pravimo prirodne brojeve pomeranjem zareza udesno za isti broj mesta i kod prvog i kod drugog broja, a zatim podelim te prirodne brojeve.
Najbitnija stvar je da pomerate za isti broj mesta.

Primer Ovde ćemo podeliti 0,76 i 0,3. Pomeraćemo zarez za dva mesta da bi deljenik bio prirodan (76) pa onda i za dva mesta kod delioca od kojeg nam nastane broj 30 što znači da treba da izvršimo deljenje 76 : 30...


Primer   0,0058 : 0,25.  Deljenik ima više decimala, 4, i zbog toga pomeramo zareze za 4 mesta udesno i kod deljenika i kod delioca: 0,0058 : 0,25 = 58 : 2500


Domaći zadatak: zbirka za domaće zadatke, strana 107. zadaci: 1, 2. i 4, a sa strane 108. razmislite kako biste 2. Ima dosta još primera, ostavićemo nešto i za sutra...

Comments

Popularne objave